Return to $\dot{a}^{2}=\frac{8 \pi G \rho_{0}}{3} \frac{1}{a}-K_{c}{ }^{2}$

- if $K<0$, RHS >0, and since $\dot{a}>0$ now, $\dot{a}>0$ 'always; Univ. expands forever -ie., $K E>P_{E}^{\prime}$
- if $K=0, R H S>0$ and Univ. also expands forever, but in a way that $\dot{a} \rightarrow 0$ as $t \rightarrow \infty \quad(k E=P E)$
- If $K>0$, RHS vanishes if $a=a_{\text {max }}=\frac{8 \pi G \rho_{0}}{3 K c^{2}}$

For this value of $a, \dot{a}=0$ ad the expansion will halt. Then contraction and universe will recollapse ($P E>K E$)
The Fluid Equation
Aside from gravity, the material that makes up the Univ also contributes to the overall evolution of $a(t)$.
$1^{\text {st }}$ Law of Thermodynamics

$$
d E+\rho d V=T d S
$$

Apply this to an expanding volume V of unit comoving radius \therefore radius $=a$
In general, energy in the volume is

$$
\begin{aligned}
E & =m c^{2}=\frac{4}{3} \pi a^{3} \rho c^{2} \\
\frac{d E}{d t} & =4 \pi a^{2} \rho c^{2} \dot{a}+\frac{4}{3} \pi a^{3} \rho c^{2} \\
\text { and } \frac{d V}{d t} & =4 \pi a^{2} \dot{a}
\end{aligned}
$$

Assuming reversible adiabatic expansion $d S=0$

$$
\begin{aligned}
& 4 \pi a^{2} \rho c^{2} \dot{a}+\frac{4}{3} \pi a^{3} \dot{\rho} c^{2}+\rho^{4} r a^{2} \dot{a}=0 \\
& \div \frac{1}{3} a^{3} c^{2} \\
& 3 \rho \frac{\dot{a}}{a}+\dot{\rho}+\frac{3}{c^{2}} \frac{\dot{a}}{a}=0 \\
&\left(\dot{\rho}+\frac{3 \dot{a}}{a}\left(\rho+\frac{\rho}{c^{2}}\right)=0\right.
\end{aligned}
$$

$1^{\text {st }}$ term in brackets: dilution of density due to
$1^{\text {ST }}$ term in brackets: dilution of density due to expansion
$2^{\text {nd }}$ term in brackels: loss of energy b / c the pressure has done work as the volume increased
No pressure forces in a homogeneous Univ.
\rightarrow no gradients!
\rightarrow pressure only drops energy density by the work done (energy goes into grave. pe.)
To solve evol, equs need to specify eqn. of state: $p=p(\rho)$ for a particular material
Acceleration Equation

$$
\text { FiE. } \begin{aligned}
\quad \dot{a}^{2} & =\frac{8 \pi G \rho a^{2}}{3}-K c^{2} \\
& \frac{\dot{a}^{2}}{a^{2}}=\frac{8 \pi G \rho}{3}-\frac{K c^{2}}{a^{2}}
\end{aligned}
$$

$\frac{d}{d t}$ both sides

$$
\frac{2 \dot{a}}{a} \frac{a \ddot{a}-\dot{a}^{2}}{a^{2}}=\frac{8 \pi G}{3} \dot{\rho}+\frac{2 k c^{2} \dot{a}}{a^{3}}
$$

$$
\begin{aligned}
& a \quad a^{c} \\
& \operatorname{sub} \text { in } \rho=-3 \dot{a} \frac{a}{a}\left(\rho+\frac{\rho}{c^{2}}\right)^{a^{3}} \\
& \frac{\ddot{a}}{a}-\left(\frac{a}{a}\right)^{2}=-4 \pi G\left(\rho+\frac{\rho}{c^{2}}\right)+\frac{k c^{2}}{a^{2}}
\end{aligned}
$$

but $\frac{K c^{2}}{a^{2}}=\frac{8 \pi G p}{3}-\left(\frac{a}{a}\right)^{2}$ from F.E.

$$
\frac{\ddot{a}}{a}=-\frac{4 \pi G}{3}\left(\rho+\frac{3}{c^{2}}\right)
$$

Note that $p>0$ increases the grav. force so further decelerates the expansion.

Equations of State

1) Matter, or, more precisely, non-relativistic matter, i.e. $\bar{V} \ll c$

In this case, $E=m c^{2}+\frac{1}{2} \frac{p_{m}^{2}}{m} \simeq m c^{2}$
where $p_{m}=$ momentum and $p=0$
(momentum is tiny compared to rest mass meres)

- baryonic matter is V. diffuse ad cool
- only interactions are gravitational (also called 'dust')

2) Radiation, or relativistic matter (ie, neutrinos) - momentum dominates over any rest mass energy

$$
P=\frac{\rho c^{2}}{3}
$$

Go back to fluid eq'n:
For matter, $\dot{\rho}+\frac{3 \dot{a}}{a} \rho=0 \rightarrow \frac{1}{a^{3}} \frac{d}{d t}\left(\rho a^{3}\right)=0$ ie. $\rho a^{3}=$ const. or $\rho=\frac{\rho_{0} a_{0}}{a^{3}}=\frac{\rho_{0}}{a^{3}} \quad w / a_{0}=1$ (cons. of mass equ as before)
For radiation, $\dot{\rho}+\frac{4 \dot{a}}{a} p=0 \rightarrow \frac{1}{a^{4}} \frac{d}{d t}\left(\rho a^{4}\right)=0$ ie pa $a^{4}=$ const or $\rho=\frac{\rho_{0}}{a^{4}} \quad w / a_{0}=1$
Why the extra power in a?

- extra loss in energy due to pal work -or, since $E=\frac{h c}{1}<\lambda$ is stretched by
a $\uparrow, E \downarrow$ for each photon

