Fluid Description of Λ
It is useful to consider a fluid description of Λ. If we define $\rho_{\Lambda}=\frac{\Lambda}{8 \pi G}$, then F.E.
is $H^{2}=\frac{8 \pi G}{3}\left(\rho+\rho_{n}\right)-\frac{K c^{2}}{a^{2}}$
and define $\Omega_{\Lambda}=\frac{\rho_{h}}{\rho_{c}}$
Fluideqn for ρ_{Λ} is: $\dot{\rho}_{1}+\frac{3 \dot{a}}{a}\left(\rho_{\Lambda}+\frac{\rho_{\Lambda}}{c^{2}}\right)=0$
But, by defin $p_{n}=0$

$$
P_{n}=-\rho_{\wedge} c^{2} \quad \text { (a negative pressure)) }
$$

Can generalize beyond a cosmo. constant.
Consider an equ. of state: $P=w \rho^{2}$ where w is a const (?). The case of $w=-1$ is equiv. to 1 , but accelerated expansion can occur if $w<-\frac{1}{3}$ (check this)
Physical cause of Λ could be vacuum energy, but simpleestimate of this energy dcusity, its too large by -124 orders of magnitude.
Matter + Lambda Univ.
Consider a spatially flat Univ -w/ matter: 1 .
$\therefore \Omega_{n, 0}=1-\Omega_{m, 0}$ where, 0 means a specificitine
$\therefore \Omega_{\Lambda, 0}=1-$ Llm,0 where, 0 means a specific tine
FEE. $H^{2}=\frac{8 \pi 6 p}{3}-\frac{K_{c}^{2}}{3}+\frac{\Lambda}{3}$
for matter $\rho=\frac{\rho_{0}}{a^{3}}, H^{2}=\frac{8 \pi G_{0}}{3 a^{3}}+\frac{\Lambda}{3}=\frac{8 y G_{\rho_{0}} H_{0}^{2}}{3 a^{3}+H_{0}^{2}}+\frac{\Lambda H_{6}^{2}}{3 H_{6}^{2}}$

$$
\begin{aligned}
&=\left(\frac{\rho_{0}}{\rho_{c, 0}}\right) \frac{H_{0}^{2}}{a^{3}}+\Omega_{n, 0} H_{0}^{2} \\
&=\Omega_{m, 0} H_{0}^{2}+\left(1-\Omega_{m, 0}\right) H_{0}^{2} \\
& \therefore \frac{H^{2}}{H_{0}^{2}}=\frac{\Omega_{m, 0}}{a^{3}}+\left(1-\Omega_{m, 0}\right)
\end{aligned}
$$

A flat Univ, wi $\Omega_{m}<1 \rightarrow \Omega_{n}>0$ will expand forever.

$$
\begin{aligned}
& \frac{1}{H_{0}^{2}} \frac{a^{2}}{a^{2}}=\frac{\Omega_{m, 0}}{a^{3}}+\left(1-\Omega_{m, 0}\right) \\
& \frac{1}{H_{0}^{2}}\left(\frac{d a}{d t}\right)^{2}=\frac{\Omega_{m, 0}}{a}+a^{2}\left(1-\Omega_{m, 0}\right) \\
& \frac{1}{H_{0}} \frac{d a}{d t}=\sqrt{\frac{\Omega_{m, 0}}{a}+a^{2}\left(1-\Omega_{m, 0}\right)} \\
& H_{0} \int_{0}^{t} d t=\int_{0}^{a} \frac{d a}{\frac{\Omega_{m, 0}}{a}+a^{2}\left(1-\Omega_{m, 0}\right)} \\
& \text { if } \Omega_{m, 0}>1\left(o r \Omega_{n, 0}<0\right) \\
& H_{0} t=\frac{2}{3 \sqrt{\Omega_{m, 0}-1} \sin ^{-1}\left[\left(\frac{a}{\left.\left(\Omega_{m, 0} / \Omega_{m, 0}-1\right)^{1 / 3}\right)^{3}}\right]\right.} \\
& \text { if } \left.\Omega_{m, 0}<1 \quad \text { (or } \Omega_{m, 0}>0\right)
\end{aligned}
$$

$$
1+\lambda<_{m, 0}<1 \quad(\operatorname{or} \Delta(n, 0>0)
$$

$$
H_{0} t=\frac{2}{3 \sqrt{1-\Omega_{m, 0}}} \sinh ^{-1}\left[\left(\frac{a}{\left(\Omega_{m_{0}} / 1-\Omega_{m, 0}\right)^{1 / 3}}\right)^{3 / 2}\right]
$$

Age of the Unis in the $\Omega_{m, 0}<1, K=0$ model

$$
\begin{aligned}
& t_{0}=\frac{2 H_{0}^{-1}}{3\left(1-\Omega_{m, 0}\right)^{1 / 2}} \sinh ^{-1}\left[\sqrt{\frac{1-\Omega_{m_{0} 0}}{\Omega_{m, 0}}}\right] \\
& \text { if } \Omega_{m, 0}=0.3, t_{0}=0.964 H_{0}^{-1}
\end{aligned}
$$

Universes w/ Matter, Curvature: Λ

$$
\text { FEE: } \frac{H^{2}}{H_{0}^{2}}=\frac{\Omega_{\mu, 0}}{a^{3}}+\frac{\left(1-\Omega_{m, 0}-\Omega_{\mu, 0}\right)}{a^{2}}+\Omega_{1,0}
$$

All have $\Omega_{m, 0}=0.3$

Observational Tests
In principle measuring to should be easy. For small z, the relationship f / w a galaxy's distance d; redshift z is $c z=$ Hod
\therefore Measure d it for a large
 sample of galaxies and fit a straight line to a plot of $c z$ and d, slope is tho.
Note: 'peculiar' velocities (ie velocities not related to expansion) cause scatter, oo need distant galaxies that sample thuble flow.
Need to define distance in an expanding Univ. - the correct way is the proper distance

$$
l_{\text {prop }}=a\left(t_{0}\right) \int_{0}^{r_{0}} \frac{d r}{\sqrt{1-k r^{2}}}
$$

but no operational way of measuring proper distance
(need to either pause the Univ, or have a really fast tape measure).
Consider luminosity distance

From metric, the area of the sphere surrounding
G :

$$
\begin{aligned}
d A & =a^{2}\left(t_{0}\right) r_{0}^{2} \sin \theta d \theta d \phi \\
A & =4 \pi a^{2}\left(t_{0}\right) r_{0}^{2}
\end{aligned}
$$

Normally, flux received $f=\frac{L}{4 \pi d^{2}}$
You may be tempted to define d_{L} such that $f=\frac{L}{4 \pi r_{0}^{2} a_{0}^{2}\left(t_{0}\right)}$ ie $d_{L}=r_{0} a\left(t_{0}\right)$

This is wrong for 2 reasons.

