This is wrong for 2 reasons:

- Units of flux: $\frac{\operatorname{erg}}{\mathrm{cm}^{2} \mathrm{~s}}$ an Earth
- units of luminosity: $\frac{e r s}{s}$ at source

A: photons are redshifted, ie have less energy which gives a reduction in flux by $(1+z)$
B: rate at which photons are received issmaller then when emitted
(ie., if emission rate is $n / \Delta t e$ and the observed rate is $n / \Delta t_{0}$, expect reduction in flux of $(1+z)$
\therefore In an expandms Univ, that has spatial curvature, the relation b/w observed flux f and the luminosity of a distant light source L is

$$
f=\frac{L}{4 \pi r_{0}^{2} a\left(t_{0}\right)^{2}(1+z)^{2}}
$$

Define the luminosity distance to be $d_{L}=r_{0} a\left(t_{0}\right)(1+z)$

Angular Diameter Distance
$\oint D \quad \theta=D \rightarrow d=D$ if $D=\operatorname{standend}$

$$
\theta=\frac{D}{d} \rightarrow d=\frac{D}{\theta} \text { if } D=\underset{\text { standard }}{\text { ruler }}
$$

element of circumference: $d C=r_{0} a\left(t_{e}\right) \theta$

$$
\text { ie. } D=r_{0} a\left(t_{e}\right) \theta
$$

note: $a\left(t_{e}\right)$ not $a\left(t_{0}\right)$
define angular diameter distance

$$
d_{A}=\frac{r_{0} a\left(t_{e}\right) \theta}{\theta}=r_{0} a\left(t_{e}\right) \frac{a\left(t_{0}\right)}{a\left(t_{0}\right)}
$$

recall: $\frac{a\left(t_{e}\right)}{a\left(t_{0}\right)}=\frac{1}{(1+z)}$
So $d_{A}=\frac{r_{0} a\left(t_{0}\right)}{(1+z)}\left(\right.$ ie $\left.\frac{d_{A}}{d_{2}}=\frac{1}{(1+z)^{2}}\right)$

Return to dprop i take $r \ll 1$

$$
f\left(r_{0}\right)=\int_{0}^{r_{0}} \frac{d r}{\sqrt{1-k r^{2}}}=\int_{0}^{r_{0}} d r\left(1+\frac{1}{2} k r^{2}+\cdots\right) \bumpeq r_{0}
$$

so $d_{\text {prop }} \simeq r_{0} a\left(t_{0}\right)$

Return to $d_{L}: d_{A}$ and take $z \ll 1$, then

$$
d_{L} \simeq r_{0} a\left(t_{0}\right) ; d_{A} \simeq r_{0} a\left(t_{0}\right)
$$

All distance reduce to $r_{0} a\left(t_{0}\right)$ for small z
Need large distances to see infl. of cosmology.
Want $r_{0}=r_{0}(z)-\cos m 0$.
Consider $K=-1, \rho=0$, no Λ
We have for propogation of light $(d s)^{2}=0$

$$
\begin{aligned}
& \int_{t_{1}}^{t_{0}} \frac{c d t}{a(t)}=\int_{0}^{r_{0}} \frac{d r}{\sqrt{1-k_{r}{ }^{2}}} \\
& \dot{a}(t)=\frac{d a}{d t} \rightarrow d t=\frac{d a}{a} \\
& \therefore \int_{a_{1}}^{a_{0}} \frac{c d a}{\dot{a} a}=\int_{0}^{r_{0}} \frac{d r}{\sqrt{1-k_{r^{2}}}}
\end{aligned}
$$

For $k=-1, \rho=0$, no $\Lambda: a^{2}=\frac{8 \pi G \rho_{0} 0_{0}^{3}}{3 a}-k_{c^{2}}=c^{2}$

$$
\begin{aligned}
& \int_{a_{0}}^{a_{0} \frac{d a}{a}=\int_{0}^{a_{0}} \frac{d r}{\sqrt{1+r^{2}}}}=\underline{\left.\ln \left(r+\left(1+r^{2}\right)^{1 / 2}\right)\right]_{0}^{r_{0}}} \\
& \\
& =\ln a]_{a_{1}}^{a_{0}}
\end{aligned} \quad \begin{aligned}
& r_{0}+\left(1+r_{0}^{2}\right)^{1 / 2}=\frac{a_{0}}{a_{0}}=(1+z)
\end{aligned}
$$

$$
\begin{gathered}
r_{0}+\left(1+r_{0}\right)=\frac{a_{0}}{a_{1}}=(1+z) \\
r_{0}-(1+z)=-\left(1+r_{0}^{2}\right)^{1 / 2} \\
r_{0}^{2}-2 r_{0}(1+z)+(1+z)^{2}=1+r_{0}^{2} \\
\rightarrow r_{0}=\frac{(1+z)^{2}-1}{2(1+z)} \\
\text { recall } \frac{K_{c}^{2}}{a_{0}^{2}}=H_{0}^{2}\left(\Omega_{0}-1\right)
\end{gathered}
$$

in this case, $K=-1, \Omega_{0}=0$ so $\frac{c^{2}}{a_{0}^{2}}=H_{0}^{2}$

$$
\text { or } \quad \frac{c}{H_{0} a_{0}}=1
$$

so $r_{0}=\frac{c}{H_{0} a_{0}} \frac{(1+z)^{2}-1}{2(1+z)} \quad\left(d_{L}=r_{0} a_{0}(1+z), e_{c}\right)$
Now consider a Univ. w/ matter but no Λ

$$
\int_{0}^{r_{0}} \frac{d r}{\sqrt{1-k r^{2}}}=c \int_{a_{1}}^{t_{0}} \frac{d t}{a(t)} \quad b u t \quad \dot{a}=\frac{d a}{d t} \text { so } d t=\frac{d a}{a}
$$

RHS: c $\int_{01}^{a_{0}} \frac{d a}{a \dot{a}} \quad$ FIE: $\frac{\dot{a}^{2}}{a^{2}}=\frac{8 \pi G \rho}{3}-\frac{K c^{2}}{a^{2}}$
Consider $K=+1$

$$
\begin{aligned}
a^{2} \dot{a}^{2} & =\frac{8 \pi G \rho a^{4}}{3}-c^{2} a^{2} \\
& =c^{2} a\left(\frac{8 \pi G \rho a^{3}}{3 c^{2}}-a\right)
\end{aligned}
$$

matter: $\rho a^{3}=\rho_{0} a_{0}^{3}=$ const.
matter: $\rho a^{3}=\rho_{0} a_{0}^{3}=$ const.
define $a_{m}=\frac{8 \pi \rho_{0} a_{0}^{3}}{3 c^{2}}$

$$
\therefore \text { RHS }=\int_{a_{1}}^{a_{0}} \frac{d a}{a^{112}\left(a_{m}-a\right)^{1 / 2}}, \Omega_{m, 0}
$$

What is $a_{m} ? a_{m}=\left(\frac{8 \pi G_{0}}{3 H_{0}^{2}}\right) \cdot \frac{H_{0}^{2} a_{0}^{3}}{c^{2}}=\frac{\Omega_{m, 0} H_{0}^{2} a_{0}^{3}}{c^{2}}$
from FEw/ $K=1, \frac{c^{2}}{a_{0}^{2}}=H_{0}^{2}\left(\Omega_{m, 0}-1\right)$

$$
\begin{aligned}
& \quad \rightarrow \frac{H_{0} a_{0}^{2}}{c^{2}}=\frac{1}{\Omega_{m, 0}-1} \\
& \text { so } a_{m}=\frac{\Omega_{m, 0}}{\left(\Omega_{m, 0}-1\right)} a_{0}
\end{aligned}
$$

in the integral, substite $a=a_{m} \sin ^{2}\left(\frac{\theta}{2}\right)=\frac{a_{m}}{2}(1-\cos \theta)$

$$
\text { so } d a=\frac{a_{m}}{2} \sin \theta d \theta
$$

denominator in the integral

$$
\begin{aligned}
a^{1 / 2}\left(a_{m}-a\right)^{1 / 2} \text { becomes } & \frac{a_{m}}{2}\left(1-\cos ^{2} \theta\right)^{1 / 2} \\
& =\frac{a_{m}}{2} \sin \theta
\end{aligned}
$$

in tegral beconos $\int_{\theta_{1}}^{\theta_{0}} \frac{\frac{a_{m}}{2} \sin \theta d \theta}{\frac{a_{m} \sin \theta}{2}}=\theta_{0}-\theta$.

Figure 7.5: Distance modulus versus redshift for type la supernovae from the Supernova Cosmology Proiect (Perlmutter et al.

