Active Galactic Nuclei

- quasars = quasi-stellar radio sources
- initially discovered by the optical follow-up of radio sources
- appeared point-like or star-like when viewed in the optical

The quasar 3C 273

- optical spectra show broad emission lines
- wavelengths of lines did not correspond to known features
 - In 1963, Maarten Schmidt could make sense of the 3C 273 spectrum if the lines were shifted to longer wavelengths (*redshifted*) by 15.8%

3C 273: *z* = 0.158

Seyferts & Quasars

• Seyferts : $M_{\rm B} > -21.5 + 5 \log h_0$, closer, mainly in spirals

Galaxy NGC 7742

• First noticed by Carl Seyfert in the 1940s

- Typically spiral galaxies which had a bright, point-like nucleus
- Since less luminous as quasars, harder to detect at such large redshifts

AGNs are split into 2 classes

PRC98-28 · Space Telescope Science Institute · Hubble Heritage Tea

- Type 1: Optical spectra show broad (v ~ 10⁴ km s⁻¹) permitted lines and narrow (a few hundred km s⁻¹) forbidden lines
- Type 2: no broad lines are visible

AGNs produce strong emission across the entire electromagnetic spectrum.

AGN Unified Model

X-rays from AGN: The Past

Ariel-V (1974-1980) 0.3-40 keV Established that all Seyfert 1 galaxies are bright X-ray sources.

HEAO-1 (1977-1979) 0.2 keV-10 MeV First large spectral sample of AGN. Well modelled over 2-20 keV by power law:

EVALUATE: Photon Flux $\propto E^{-\Gamma}$ ph cm⁻² s⁻¹keV⁻¹ Found narrow dist'n around Γ =1.7

Einstein Obs. (1978-1981) 0.2-20 keV First focusing X-ray telescope with 2" resolution. Showed that all AGN are strong X-ray emitters. Confirmed the Γ =1.7 slope in the 0.7-4 keV band for Sy 1s.

EXOSAT (1983-1986) 0.05-50 keV
Discovered a 'soft excess' in ~50% of Seyferts. 3 day orbit allowed long timing studies. First derivation of AGN power density spectra.

Ginga (1987-1991) 1.5-37 keV Increase in sensitivity allowed discovery of strong Fe K α line emission in many Seyferts. Also discovered the spectral hardening > 8 keV. Ushered in the reflection paradigm.

ASCA (1993-2001)0.4-10 keVFirst X-ray telescope to use CCDs. First detection of relativisticallybroadened Fe K α lines. Allowed characterization of the warmabsorber. Extended studies to quasars.

Suzaku (2005-2015)

0.2-600 keV

Carried hard X-ray instruments (non-imaging) plus 3 CCD soft X-ray detectors allowing broadband spectroscopy. Area was smaller than *XMM-Newton* but had higher resolution around the Fe K line.

X-rays from AGN: The Present (1999-?)

Chandra & *XMM* have combined range of 0.2-12 keV. Both carry gratings to provide dispersed spectra. *Chandra* has sub-arcsecond imaging. *XMM-Newton* has more than 10× the sensitivity of *ASCA*. *NuSTAR* has an energy range of 3-80 keV. First ever hard X-ray imaging telescope.

Current Spectral Model: Overview

Taking into account reflection increases the intrinsic power law to $\Gamma \sim 2$.

Spectral Model: The power law

- In a sense, it is not clear why AGN emit X-rays at all. But $L_{2-10 \text{ keV}} \sim 0.15 L_{Bol}$.
- Optically-thick accretion disc:

$$T_{\rm max} = 12 \left(\frac{\dot{M}}{0.1\dot{M}_{\rm Edd}}\right)^{1/4} \left(\frac{\eta}{0.1}\right)^{-1/4} \left(\frac{M}{10^7 M_{\odot}}\right)^{-1/4} eV$$

- Synchrotron does not work (predicts sig. γ-ray emission)
- Bremsstrahlung requires a large volume of very hot gas (~10⁹ K), but variability causes problems

 If there are some hot electrons around, then UV photons can be 'up-scattered' to X-rays

 $-\cos\theta$

m_eC

Recall Compton scattering:

 But when e⁻ is moving, then photon can gain energy ⇒ inverse Compton scattering

Κ

- More interesting case: repeated scatterings off of thermal electrons by low energy photons ($h_V << m_e c^2$)
- Restrict attention to non-relativistic e^{-} (kT<< m_ec^2)

In this case the average fractional change in energy per scattering:

$$\left\langle \frac{\Delta \varepsilon}{\varepsilon} \right\rangle = \frac{4kT}{m_e c^2} - \frac{\left\langle \varepsilon \right\rangle}{m_e c^2}$$

If $\varepsilon > 4kT$ energy transferred to electrons.

If $\varepsilon < 4kT$ energy transferred to photons.

Spectral Model: Reflection

- Ginga found strong Fe K α emission at 6.4 keV (cold iron). This is a fluorescence line.
- No correlation of line strength with line-of-sight absorption.
- Ginga also found spectral hardening above 8 keV
- Both features explained by X-ray reprocessing in optically-thick material.
- Out of the line-of-sight but would subtend a significant solid-angle as seen from the X-ray source

George & Fabian (1991); Matt, Perola & Piro (1991)

So, where is the reflector?

How about the accretion disc:

This makes an interesting prediction...

Spectral Model: The Fe Ka line

What happens to an emission line which originates from a spinning disc close to a black hole?

The red-wing primarily determined by inner radius

... Possible to determine space-time around black hole.

The Case of MCG-6-30-15

- 330 ks = 3.8 days XMM-Newton observation of MCG-6-30-15.
- Highest quality hard X-ray spectrum of a Sy1 ever made

Accretion Discs

The energy that produces the X-rays must come from the accretion power. How to convert into X-rays?

TRACE

Look to the Sun...

0.07 keV

 Buoyancy and Parker instabilities will cause the generated magnetic field to be expelled ⇒ magnetically dominated corona

Miller & Stone (2000) +/- 5 disc scale heights Magnetic reconnection would then presumably occur above the disc.

 This would release the accretion energy carried by the magnetic field and generate a hot plasma

X-ray Variability

X-ray Variability

RMS-flux correlation

The Cosmic X-ray Background

 XRB was the first cosmic background detected
 Discovered (along with Sco X-1) during a rocket flight that intended to detect the moon (Giacconi et al. 1962)

Above 1-3 keV the XRB is isotropic to within a few per cent on large scales

 Strongly suggests an extragalactic origin

 spectrum peaks at 30-40 keV

• between ~1 and 20 keV the spectrum is well fit with a power-law with photon index, $\Gamma = 1.4$ (photon-flux $\propto E^{-\Gamma}$)

no obvious spectral features -> no z info

Diffuse Models of the XRB

- Felton & Morrison (1966): inverse Compton scattering of CMB photons by intergalactic electrons
 - hard to produce the 30-40 keV break (Coswik & Kobetich)
- Hoyle (1963) bremsstrahlung emission from hot IGM electrons produced by decaying neutrons in a Steady-State Universe
 - overproduced the XRB (Gould & Burbidge 1963; Friedman 1990)

The XRB spectrum can actually be well fit by a ~40 keV bremsstrahlung plasma

- the emitting gas would be from a hot IGM (Cowsik & Kobetich 1972; Field & Perrenod 1977)
- but the energy density in such a gas would be comparable to the CMB
- moreover, Ω_{baryon}>0.23 in order to match the observed intensity (Guilbert & Fabian 1986; Barcons 1987)
- finally, such a large amount of hot gas would distort the shape of the CMB which is of course not observed

red herring

Discrete Models of the XRB

 the most common hard extragalactic Xray sources are AGN
 they have power-law spectra above 2 keV
 but the average observed photon-index of AGN is Γ~1.7

- Setti & Woltjer (1989) pointed out that absorbed AGN would have much steeper X-ray spectra
- Proposed that the XRB was comprised of the sum total of emission from mostly obscured AGN over a range of luminosity, redshift and obscuring column
- they were inspired by the AGN unification model

Risaliti, Maiolino & Salvati (1999)

The XRB in the *Chandra* and *XMM-Newton* Era

- In the 1990s the theoretical machinery behind Setti & Woltjer's idea was developed (XRB synthesis models) and confirmed that the idea could work
- Required a hard X-ray luminosity function (LF) and its evolution
- X-ray satellites of this era lacked the spatial resolution to determine this to any significant redshift
- Optical LFs or a soft X-ray LF from ROSAT were used instead
- This all changed with the launch of *Chandra* and *XMM-Newton*

LDDE model + high-z decline; Ueda et al. (2014)