Compton Scattering: Comptonization
When the incident radiation has energy um quantum effects become important and the scattering is best described w/ the scattering of photons. QM effects appear in 2 ways. First, through the Kinematics of the scattering process b/C he photon posses a momentum $\frac{h r}{c}$ as well as $\epsilon=h r$.

Consider an $e^{-}$at rest: $\epsilon_{1}=r_{r_{1}}, \vec{p}_{\gamma_{p}}$


Conservation of energy i' momentum gives the solution for the scattered energy

$$
\epsilon_{1}=\frac{\epsilon}{1+\left(\frac{\epsilon}{m c^{2}}\right)(1-\cos \theta)} \quad \leq \epsilon
$$

$\therefore$ The photon is always redshifted $b / c$ the recoil of the $e$-carries away some of the incident photon's energy, Note that if $\epsilon \ll m c^{2}$ we recover Thomson scatteiving.
The $2^{\text {nd }}$ quantum effect is to change the cross-section, it is
now energy dependent. The differential cross-section tor unpol radiation is shown in QED to be

$$
\frac{d \sigma}{d \Omega}=\frac{e^{4}}{2 m^{2} c^{4}}\left(\frac{\epsilon}{\epsilon_{1}}+\frac{\epsilon_{1}}{\epsilon}-\sin ^{2} \theta\right) \frac{\epsilon_{1}^{2}}{\epsilon^{2}} \propto \frac{1}{\epsilon} \text { for large } \epsilon
$$

(Check that it reduces to classical $\frac{d \sigma}{d \Omega}$ when $\epsilon_{1} \simeq \epsilon$ )
The principle effect is to reduce the cross-section from its classical value as $\in$ becomes large. Thus, Compton scattering becomes less efficient at large $E$.
The total cross-section is (Klein-Nishina cross-section)

$$
\sigma=\sigma_{T} \frac{3}{4}\left[\frac{1+x}{x^{3}}\left\{\frac{2 x(1+x)}{1+2 x}-\ln (1+2 x)\right\}+\frac{1}{2 x} \ln (1+2 x)-\frac{(1+3 x)}{(1+2 x)^{2}}\right]\left(x=\frac{h r}{\mu c^{2}}\right)
$$

when $x \ll 1, \sigma \simeq \sigma_{T}\left(1-2 x+\frac{26}{5} x^{2}+\cdots\right)$

$$
x \gg 1, \sigma=\frac{3}{8} \frac{\sigma_{T}}{x}\left[\frac{1}{2}+\ln 2 x\right]
$$

- If the $e^{-}$is moving then, if it has sufficient Kinetic energy compared to the imoming photon, net energy may be transferred from the e-to the photon. Thus, the scattered photon gains energy. This is called inverse Coungoton scattering or Compton up-scattering.
Easiest to see for highly-rclativistic $e^{-w /}$ Lorentz factor $\gamma$ Consider the geometry in the observer's frame $(k)$ and $e^{-}$ rest frame ( $K^{\prime}$ )


We wont $\epsilon_{1}$ in terms of $\epsilon$. Make 3 transformations

$$
\epsilon \xrightarrow{\text { Doppler }} \epsilon^{\prime} \xrightarrow{\text { Compton }} \epsilon_{1}^{\prime} \xrightarrow{\text { Doppler }} \epsilon_{1}
$$

The Doppler shift formulas are $\epsilon^{\prime}=\epsilon \gamma(1-\beta \cos \theta)$ $\epsilon_{1}=\epsilon_{1}^{\prime} \gamma\left(1+\beta \cos \theta_{5}^{\prime}\right)$
The Compton formula after averaging over $\theta$ is

$$
\begin{aligned}
& \epsilon_{1}^{\prime}=\frac{\epsilon^{\prime}}{1+\left(\frac{\epsilon^{\prime}}{m c^{2}}\right)} \\
& \therefore \epsilon_{1}=\gamma^{2} \epsilon\left(1+\frac{\gamma \epsilon}{m c^{2}}\right)^{-1}(1-\beta \cos \theta)\left(1+\beta \cos \theta_{S}^{\prime}\right) \\
& \simeq \gamma^{2} \epsilon(1+\underbrace{\frac{\gamma \epsilon}{m c^{2}}}_{\text {(recoil term; small if }})^{-1} \text { since } \theta i \theta_{s}^{\prime} \text { are characteristically } \\
&-\frac{\pi}{2}
\end{aligned}
$$

The process can convert a low-energy photon to a high-energy one by a factor u $\gamma^{2}$. (Note: for specific angles, the scattered energy can be less than the initial)

