Deborah - Kilonovas
Chris -Magnetically driven jets
Pranav - Magnetars
To determine the broadband spectral properties for both suturated and unsaturated Comptonization, use the Kompto neets equation, which describes the evolution of the photon distribution due to repeated, non-relativistic scatterings

$$
\frac{d n}{d t_{c}}=\left(\frac{k T}{m c^{2}}\right) \frac{1}{x} \frac{\partial}{\partial x}\left[x^{4}\left(\frac{\partial n}{\partial x}+n+n^{2}\right)\right]
$$

where $t_{c} \equiv\left(n_{e} \sigma_{T} c\right)$ t is the Compton time, the mean time b/w scattering

$$
x=\frac{\hbar \omega}{k T}
$$

$n=$ photon phase space density, ie. a Bose-Einstein
distribution and is conserved
This equation is basically a diffusion equation in freq. space. $1^{\text {st }}$ term: Doppler heating
$2^{\text {nd }}$ term: Compton recoil
$3^{n d}$ term: induced scattering (QMeffect; important when $n \gg 1$ )

In the astrophysical context, wont steady-state solutions due to a source of soft photons

Define $Q(x)=$ \#source photons procluce per $t$ per state

$$
=Q_{0}(x) \quad x<x_{s}<1 ; Q_{0}=0 \text { for } x>x_{s}
$$

Assume that the escape prob./scatter is $\frac{1}{N}=\frac{1}{\max \left(T, T^{2}\right)}$ and neglect stimulated scattering ( $n \ll 1$ )
Then the modified Komptoneets eam for this situation is

$$
\frac{\partial n}{\partial t_{c}}=\frac{K T}{m c^{2}} \frac{1}{x^{2}} \frac{\partial}{\partial x}\left[x^{4}\left(\frac{\partial n}{\partial x}+n\right)\right]+Q(x)-\frac{n}{\max \left(Y, r^{2}\right)}
$$

$=0$ for steady state
First, what is the spectrum for $x \gg x_{S}$ (here, $Q=0$ )

$$
\max \left(\pi, y^{2}\right) \frac{k T}{m c^{2}} \frac{\partial}{\partial x}\left[x^{4}\left(\frac{\partial n}{\partial x}+n\right)\right]-x^{2} n=0
$$

or $\frac{1}{4}$ y $\left.\frac{K T}{m c^{2}} \frac{\partial}{\partial x}\left[x^{4}\left(\frac{\partial n}{\partial x}\right)+n\right)\right]-x^{2} n=0$
For $x \gg 1$, can neglect $x^{2}$ term, so

$$
\begin{aligned}
& \frac{y}{4} \frac{K T}{m c^{2}} \frac{\partial}{\partial x}\left[x^{4}\left(\frac{\partial n}{\partial x}\right)+n\right]=0 \\
& \Rightarrow x^{4}\left(\frac{\partial n}{\partial x}+n\right)=\text { const }
\end{aligned}
$$

$$
\rightarrow \frac{\partial n}{\partial x}=-n+\frac{\text { const }}{x^{4}}
$$

As x gets big, $n \simeq e^{-x}=e^{-h r / k_{T}}$
Since intensity I $1 r^{3} n$, the spectrum has a Wien shape
Second, $x \gg x_{s}$ (so $Q=0$ ) but $x \ll 1$. Here we can neglect $n$ compared to $\frac{\partial n}{\partial x}$
then $\frac{1}{4}$ y $\frac{k T}{m c^{2}} \frac{\partial}{\partial x} x^{4}\left(\frac{\partial u}{\partial x}\right)-x^{2} n=0$
Trying a power -law of the form $n \alpha x^{m}$ we find

$$
m=-\frac{3}{2} \pm\left(\frac{9}{4}+\frac{4}{y}\right)^{1 / 2}
$$

Thus, unsaturated Comptonization can give a power-law continuum from a thermal process.
If $y \ll 1$, take the negative root
$y \gg 1$, then Comptonization is saturated: get the low -r limit of the Wien spectrum
Spectrum
Unsaturated

$$
\log I_{r}
$$



If measure slope: cutoff can observationally determine $K T \therefore Y$.

Compton Heating: Cooling

Recall net energy exchanged in a collision

$$
\left\langle\frac{\Delta \epsilon}{\epsilon}\right\rangle=\frac{4 k T-\epsilon}{m c^{2}}
$$

Let $N_{r} d v$ be the \# of photon per unit volume $w /$ $v$ b/w $[r, r+d r]$. Then a change in the radiation energy density in that freq. interval is

$$
\Delta\left(N_{r} \in d r\right)=N_{V} \frac{\epsilon}{m c^{2}}(4 K 1-\epsilon) d r \quad \underbrace{}_{\substack{\text { where } \\ \epsilon=h r}}
$$

Then $\frac{\partial U}{\partial t}$ is found by $x$ ohs by the rate of scatterings $n_{e} c \sigma_{T}$; integrating over all freq:

$$
\frac{\partial U}{\partial t}=\frac{n_{e \sigma}}{m c} \int_{0}^{\infty} d r U_{r}(r)(4 k T-h r)
$$

