Monday, February 22, 2016
For a BH w/ no hard surface, The accretion evergy
does not have to all come out as rad'n-some can just
fall into the BH i add to its wass. Minimum radius of
Blt accretion (its 'surface') is Schuarzschild radius
rs = 26M. Radiation is released up on efficiency n
$r_s = 2GM$. Radiation is released whom efficiency $n_s = \frac{2GM}{c^2}$.
We will see that the most radiative efficient occretion
occurs in a thin disk. GR gives a min value to the
innermost stable circular orbit (ISCO).
The max amount of energy that can be released
via BH accretion is for a cas particle falling from
in The max. amount of energy that can be released via BH accretion is for a gas particle falling from through the disk to the Isco.
=> Mmax = (max. available grav. p.e.) = (max binding energy)
(rest mass every (rest mass even)
For a Schwarzschild BH, The ISCO is at min = 3Rs = 66M
A Newtonian calcultion gives Many = \(\left(\text{GMm/2rmin} \right) = \left(\text{GMm/2fmin} \right) = \frac{1}{2} \text{GM} \right) = \frac{1}{2} = 0.08\frac{3}{2} \right. The factor of 2 comes from the orbital KE of the particle.
1 = (6Mm/2rmin) = (6Mmc3/12GM)
mc^2 mc^2 mc^2 mc^2
The factor of 2 comes from the orbital KE of the particle
Lucy to account
taking into account
A proper relativistic calculation there is a reduction in the

max binding energy of find Maria = 0-058 For a Kerr BH, the max efficiency depends on the value of $\alpha = \frac{1}{M}$ for the BH. For a maximal rotating BH $w/\alpha = 1$, 1 min GM i Mmax = 0.423 for prograde rotation. [Thorne 1974; amax = 0.998; Mmax = 0.30 (b/c of photous w/ neg. ang. mom.)] For a counter-rotating BH, From ~ 9 GM/c2; Mmax = 0.03 An observational constraint on efficiency (Fabian 1979) that, for spherical sources, is model independent. Suppose the luminosity L is radiated by a variable source over a timescale Δt . If the source has a significant escattering optical depth 1 > 1, the observed timescale of variation must satisfy At > (1+4) R where the effective diffusion velocity of the rad'u in the source is S. If the density in the source is in the mass involved is M= 4 TR 8 nmp i the luminosity is L= 2Mc2 So, SINCE Y=noTR, $M = \Delta t L = \Delta t L = \Delta t L \sigma_T$ $Mc^2 = \frac{3\pi R^3 n m \rho c^2}{3\pi R^2 r m \rho c^2}$ but Atc 3 (1+r)R

or (Atc)2 = (1+T)2 R2 $\eta = \frac{3(\Delta f) Lo_{7}(1+\gamma)^{2}}{4\pi(\Delta f)^{2}c^{4}\gamma mp}$ Since T>1, (1+7)2 y and remembering this Y >1 $\frac{\eta > 3L\sigma_{\tau}}{4\pi(\Delta t)c^{4}m\rho} = \frac{1}{(2\times10^{42}ers)}\Delta t$ This argument will yield an estimate of y even for a general source of opacity.