There can be 3 regimes in an accretion disk:

1) inner $\operatorname{disk}\left(K=\frac{\sigma_{T}}{m p}=0.4 \mathrm{~cm}^{2} \mathrm{~g}^{-1} ; P_{\text {rad }}>P_{\text {gas }}\right)$
2) middle disk $\left(\alpha=\frac{\sigma_{T}}{m_{p}}=0.4 \mathrm{~cm}^{2} \mathrm{~g}^{-1} ; P_{\text {gas }}>P_{\text {rad }}\right)$
3) outer $\operatorname{disk}\left(\alpha=\right.$ Kramer's $L a w=6.6 \times 10^{22} \rho^{-7 / 2} \mathrm{~cm} / \mathrm{g}$
$P_{\text {gas }}>P_{\text {rad }} \quad \downarrow \quad \downarrow$ approx expression which combines of sf opacity for solar abundances

Solution for Outer disk. Gas pressure dominated w/ Kramer's opacity. Write $\left(1-\left(\frac{R_{*}}{R}\right)^{1 / 2}\right)=y^{4}$ i write D for the RHS of the energy eq: $\frac{4 \sigma}{3 \Gamma} T_{c}^{4}=D(R)$
but $Y=\Sigma K=\Sigma\left(6.6 \times 10^{22}\right) \rho T_{c}^{-7 / 2}$

$$
\therefore T_{c}^{15 / 2}=\frac{3\left(6.6 \times 10^{22}\right)}{4 \sigma} \rho \sum D(R)
$$

but $\rho=\frac{\sum}{H}$ and $H=\frac{C_{S} R^{3 / 2}}{(G M)^{1 / 2}}$ so $\rho=\frac{\sum(G M)^{1 / 2}}{C_{S} R^{3 / 2}}$

$$
\therefore T_{c}^{15 / 2}=\frac{3\left(6.6 \times 10^{22}\right)}{4 \sigma} \frac{\sum^{2}(G M)^{1 / 2}}{C_{S} R^{3 / 2}} D(R)
$$

$4 \sigma \quad \overline{c_{S} R^{3 / 2}}$
but $C_{s}^{2}=\frac{P}{\rho}=\frac{\rho K T_{c}}{\mu m p \varnothing} \rightarrow C_{s}=\sqrt{\frac{K}{\mu m_{p}}} T_{c}^{1 / 2}$

$$
\therefore T_{c}^{8}=\frac{3\left(6-6 \times 10^{22}\right)}{4 \sigma} G^{\prime \prime 2} \sqrt{\frac{\mu m_{p}}{K}} \sum^{2} M^{1 / 2} D(R) R^{-3 / 2}
$$

Combine this w/ $7=8$

$$
\begin{aligned}
7 & \rightarrow \sum=\frac{\dot{M} \dot{y}^{4}}{3 \pi r} \div 8 \rightarrow V=\alpha C_{s} H=\frac{\alpha K T_{c}}{\mu m_{p}} \frac{R^{3 / 2}}{(G M)^{1 / 2}} \\
& \rightarrow \sum=\frac{\dot{M} \mu m_{p}(G M)^{1 / 2} y^{4}}{\alpha K T_{c} R^{3 / 2} 3 \pi} \\
\Sigma^{8}= & \left(\frac{\mu m_{p}}{K}\right)^{8} G^{4}\left(\frac{1}{3 \pi}\right)^{8} y^{32} \dot{M}^{8} M^{4} \alpha^{-8} T_{c}^{-8} R^{-12}
\end{aligned}
$$

Sub in for T_{c}^{-8} from above

$$
\sum^{10}=\left(\frac{\mu m \rho}{k}\right)^{15 / 2} G^{7 / 2}\left(\frac{1}{3 \pi}\right)^{8}\left(\frac{3\left(6.6 \times 10^{22}\right)}{4 \sigma}\right)^{-1} M^{8} M^{7 / 2} \alpha^{-8} D^{-1} R^{-21 / 2 y^{3 / 2}}
$$

sub in for $D(R)$ i $A S A$

$$
\sum=\left(5.358 \times 10^{-12}\right) \dot{M}^{7 / 10} M^{1 / 4} \alpha^{-4 / 5} R^{-3 / 4} y^{14 / 5}
$$

egg. a NS scaling would be $\dot{M}=10^{16} \mathrm{~s}, ~ M=M_{0}!R=10^{10} \mathrm{~cm}$

$$
\sum=5.67\left(\frac{M}{M_{\theta}}\right)^{1 / 4}\left(\frac{M_{1}^{10}}{10^{10}}\right)^{7 / 10} \alpha^{-4 / 5}\left(\frac{R}{10^{10} \mathrm{~cm}}\right)^{-3 / 4} y^{14 / 5} \frac{\mathrm{~g}_{2}}{\mathrm{~cm}^{2}}
$$

a BH scaling gives

$$
\Sigma=\left(4.487 \times 10^{5}\right)\left(\frac{M}{M_{0}}\right)^{1 / 5}\left(\frac{\eta}{0.1}\right)^{-7 / 10} \alpha^{-4 / 5}\left(\frac{\dot{M}}{\dot{M}_{\text {cad }}}\right)^{7 / 10}\left(\frac{R}{R_{\text {sch }}}\right)^{-3 / 4} f^{14 / 5} \frac{g}{\mathrm{~cm}^{2}}
$$

The total sol'n for outer disk is: ($w /$ BH scaling)

$$
H=(2144) \alpha^{-1 / 0}\left(\frac{M}{1}\right)^{9 / 0}\left(\frac{R}{0}\right)^{9 / 8}\left(\frac{M}{M}\right)^{3 / 20}(\eta)^{-3 / 20} 7^{3 / 5}
$$

$$
\begin{aligned}
& H=(2144) \alpha^{-1 / 0}\left(\frac{M}{M_{\theta}}\right)^{9 / 10}\left(\frac{R}{X_{\text {sch }}}\right)^{9 / 8}\left(\frac{M}{M_{\text {End }}}\right)^{3 / 20}\left(\frac{\eta}{0-1}\right)^{-3 / 20} y^{3 / 5} \mathrm{~cm} \\
& P=(209.7) \alpha^{-7 / 10}\left(\frac{M}{M_{0}}\right)^{-7 / 10}\left(\frac{\eta}{0.1}\right)^{-11 / 20}\left(\frac{M}{M_{\text {End }}}\right)^{11 / 20}\left(\frac{R}{R_{\text {sch }}}\right)^{-15 / 8} \mathrm{y}^{11 / 5} \frac{\mathrm{~g}^{3}}{\mathrm{~cm}^{3}} \\
& T_{c}=\left(1.76 \times 10^{8}\right) \alpha^{-1 / 5}\left(\frac{\eta}{0.1}\right)^{-3 / 10}\left(\frac{M}{M_{0}}\right)^{-1 / 5}\left(\frac{M}{M_{E_{d d}}}\right)^{3 / 10}\left(\frac{R}{R_{\text {sch }}}\right)^{-3 / 4} \mathcal{F}^{6 / 5} \mathrm{~K} \\
& \Gamma=(88.2) \alpha^{-4 / 5}\left(\frac{M}{M_{0}}\right)^{1 / 5}\left(\frac{\eta}{0-1}\right)^{-1 / 5}\left(\frac{M}{M_{\text {Ind }}}\right)^{1 / 5} y^{4 / 5} \\
& V=\left(3.30 \times 10^{11}\right) \alpha^{4 / 5}\left(\frac{M}{M_{0}}\right)^{4 / 5}\left(\frac{\eta}{01}\right)^{-3 / 10}\left(\frac{M}{M_{\text {End }}}\right)^{3 / 10}\left(\frac{R}{R_{\text {sch }}}\right)^{3 / 4} y^{6 / 5} \frac{\mathrm{~cm}^{2}}{\mathrm{~S}} \\
& V_{R}=\left(1.68 \times 10^{6}\right) \alpha^{4 / 5}\left(\frac{\eta}{0.1}\right)^{-3 / 10}\left(\frac{M}{M_{0}}\right)^{-1 / 5}\left(\frac{\mu}{M_{\text {id }}}\right)^{3 / 10}\left(\frac{R}{R_{\text {sch }}}\right)^{-1 / 4} y^{-14 / 5} \frac{\mathrm{~cm}}{\mathrm{~s}}
\end{aligned}
$$

Note that α doesn't enter nato the solution w/ a high power

$$
\left(\frac{H}{R}\right)=(0.0073)\left(\frac{M}{M_{0}}\right)^{-1 / 10}\left(\frac{R}{R_{\text {sch }}}\right)^{1 / 8}\left(\frac{\eta}{0-1}\right)^{-3 / 20}\left(\frac{M}{M_{E d d}}\right)^{3 / 20} \alpha^{-1 / 10} y^{3 / 5} \ll 1
$$

Check where the assumption of Kramer's opacity breaks down. $K=\frac{Y}{\sum}$ which is indeperchat of α and prop -to $R^{\frac{3}{4}}$

When a gas is fully ionized $K \approx 0.4<K_{R}$
So K_{R} is valid for

$$
\left(\frac{R}{R_{\text {sch }}}\right) \geqslant\left(2.6 \times 10^{4}\right)\left(\frac{n}{0.1}\right)^{-2 / 3}\left(\frac{n}{r_{\text {Rad }}}\right)^{2 / 3} y^{8 / 3}
$$

