The energy carried away by the radiation originates from
the rotational energy of the NS: $E=\frac{1}{2} I \Omega^{2}$ where I
is the moment of inertia

$$
\therefore \dot{E}=I \Omega \dot{\Omega}
$$

Since $\dot{E}<0, \dot{\Omega}<0$ and the pulsar slows down.
Define a characteristic age T at the present time by

$$
\begin{aligned}
T & \equiv-\left(\frac{\Omega}{\Omega}\right)_{0}=-\frac{2 E}{\dot{E}}=\frac{-I \Omega_{0}^{2}}{\left(-\frac{8 \pi R^{6} B^{2} \Omega_{0}^{4} \sin ^{2} \alpha}{3 \mu_{0} c^{3}}\right)} \\
& =\frac{3 \mu_{0} c^{3} I}{8 \pi R^{6} B^{2} \Omega_{0}^{2} \sin ^{2} \alpha}
\end{aligned}
$$

Now, lets look at the time enol of Ω :

$$
\begin{aligned}
& \begin{array}{l}
\Omega \frac{d \Omega}{d t}=\frac{\dot{E}}{I}
\end{array}=\frac{-8 \pi R^{6} B^{2} \Omega^{4} \sin ^{2} \alpha}{3 \mu_{0} c^{3} I}=\frac{-\Omega_{0}^{2}}{\Omega_{0}^{2}} \frac{8 \pi R^{6} B^{2} \sin ^{2} \alpha}{3 \mu_{0} c^{3} I} \Omega^{t} \\
&=\frac{-\Omega^{4}}{\Omega_{0}^{2} T} \\
& \begin{aligned}
\int_{\Omega_{i}}^{\Omega} \Omega^{-3} d \Omega & =-\frac{1}{\Omega_{0}^{2} T} \int_{0}^{t} d t \\
\vdots & \Omega
\end{aligned} \\
& \quad=\Omega_{i}\left(1+\frac{2 \Omega_{i}^{2}+}{\Omega_{0}^{2} T}\right)^{-1 / 2}
\end{aligned}
$$

Set $\Omega=\Omega_{0}$, then this gives the present age of the pulsar

$$
t=\frac{T}{2}\left(1-\frac{\Omega_{0}^{2}}{\Omega_{i}^{2}}\right) \simeq \frac{T}{2} \quad \text { for } \Omega_{0} \ll \Omega_{i}
$$

This estimate of age does not depend on the detailed properties of the underlying NS, only on the behavior of $\Omega(t)$ due to magnetic dipole radiation.
For the Crab pulsar Twas measured to be 2486 yr (m 1972),
implies an age from mag. dipole rad'n, of 1243 yr (actually
For a $1.4 M_{0}, R=12 \mathrm{~km} N S, I=1.4 \times 10^{45} \mathrm{~g} \mathrm{~cm}{ }^{2}$

$$
\dot{E}=I \Omega \dot{\Omega}=6.4 \times 10^{38} \mathrm{erg} \mathrm{~s}^{-1}
$$

Observed radon ; KE losses $\approx 5 \times 10^{38} \mathrm{ergs}^{-1}$

$$
\left(\text { radio pulse } \sim 10^{31} \text { erg } 5^{-1}\right. \text {) }
$$

Using this E from the Crab; adopting the mag-dipole model

$$
B=5 \times 10^{12} G \quad(\sin \alpha=1)
$$

Such a value arises naturally from the collapse of a main sequence stor w/ a typical 'frozen-in' surface field of 100 G . The decrease in radius by a factor of 10^{5} leads to an increase in B by a factor of $\sim 10^{10}$.

$$
\text { For magnetic dipole model iuniform sphere }\left(I=2 m R^{2} / 5\right)
$$

leases 10 an increase in D by a factor ot \sim_{10}.
For magnetic dipole model i uniform sphere ($I=2 M R^{2} / 5$)

$$
B=-\left(\frac{3 \mu_{0} c^{3} M \Omega}{20 \pi \Omega^{3} R^{4}}\right)^{1 / 2}
$$

Using $\dot{\Omega}=-\frac{\dot{p} \Omega^{2}}{2 \pi}, \quad B=\left(\frac{3 \mu_{0} c^{3} M}{80 \pi^{3} R^{4}}\right)(p \dot{p})^{1 / 2}$

$$
\simeq 3 \times 10^{11}(P \dot{P})^{1 / 2} G
$$

Braking Index
For any power -law deceleration model, we write

$$
\dot{\Omega}=-(\text { constant }) \Omega^{n}=-k \Omega^{n}
$$

$n=$ braking index $(=3$ for the mag-dipole model)
differentiating $\ddot{\Omega}=-n K \Omega^{n-1} \dot{\Omega}$ i then divide by the
Ω expression

$$
\begin{aligned}
& \frac{\ddot{\Omega}}{\dot{\Omega}}=\frac{+n k \Omega^{n-1} \dot{\Omega}}{x k \Omega^{n}} \\
& \frac{\ddot{\Omega}}{\dot{\Omega}^{2}}=\frac{n}{\Omega} \rightarrow n=\frac{\Omega \ddot{\Omega}}{\dot{\Omega}^{2}}=2-\frac{p \ddot{p}}{\dot{p}^{2}}
\end{aligned}
$$

Thus, n can be measwed

$$
\begin{array}{ll}
n=2.515 & \text { Crab } \\
n=2.837 & \text { SR B1509-58 } \\
n=1.81 & \text { PSR B0540 } \\
n=3 & \text { PSR J1119 }
\end{array}
$$

Magnetic breaking is not the whole story, but B, α or I could all vary w/ time.
Accretion onto Magnetized NS S [SI]
The NS B-field is roughly a dipole so $|B| \propto \frac{1}{r^{3}}$
ie, $B \approx\left(\frac{R_{*}}{r}\right)^{3} B_{s}$ where B_{s} is field strength of surface of $\omega S \mathrm{w} /$ radius R_{*}

This B-field will hove an associated mag- pressure

$$
P_{\text {mag }} \simeq \frac{B^{2}}{2 \mu_{0}} \approx\left(\frac{B_{s}^{2}}{2 \mu_{0}}\right)\left(\frac{R_{*}}{r}\right)^{6}
$$

Consider spherical accretion from ∞, so the gas is falling radially at its free-fall speed $V=\left(\frac{2 G r_{k}}{r}\right)^{1 / 2}$

It will exert a ram pressure $P_{\text {ram }}=\rho v^{2}$ radially inworghs

$$
\left[P_{\text {ram }}=\text { mom }- \text { density } \times \text { velocity }=\text { momentum flux }\right]
$$

When $P_{\text {ran }}=P_{\text {mag, }}$, the magnetic field will become dynamically important to the accreting gas.

$$
\rho v^{2}=\frac{B_{s}^{2}}{2 \mu_{0}}\left(\frac{R_{*}}{r_{M}}\right)^{6}
$$

107

$$
\rho v^{2}=\frac{B_{s}^{2}}{2 \mu_{0}}\left(\frac{R_{*}}{r_{M}}\right)^{6}
$$

where r_{M} is the Alfven radius. From mass continuity,

$$
\begin{aligned}
& \dot{M}=4 \pi r^{2} \rho v: \\
& \frac{M}{4 \pi r_{M}^{2}} \times \frac{\left(2 G M_{*}\right)^{1 / 2}}{r_{M}^{1 / 2}}=\frac{B_{s}^{2}}{2 \mu_{0}} \frac{R_{*}^{6}}{r_{m}^{6}} \\
& r_{M}=\left(\frac{2 \pi^{2}}{G \mu_{0}^{2}}\right)^{1 / 7}\left(\frac{B_{s}^{4} R_{*}^{12}}{M_{*} M^{2}}\right)^{1 / z}
\end{aligned}
$$

For an Eddington limited accreting NS w/ $\eta=0.1, B_{S}=10^{12} \mathrm{G}$
i $R_{k}=10 \mathrm{~km}, r_{M}=10^{3} \mathrm{Km}=100 \mathrm{R}$

$$
\left(r_{M} \leqslant R_{*} \text { for } B_{*} \leqslant 10^{9} \mathrm{G}\right)
$$

