Let $t_{1}^{A} ; t_{2}^{A}$ be the arrival times of radiation at the observer from points $1 i_{i} 2:, \Delta t^{A}=t_{2}^{A}-t_{1}^{A}$ is less them $t_{2}-t_{1}$ by Doppler compression

$$
\therefore \Delta t^{A}=\frac{2}{\gamma \omega_{B} \sin \alpha}\left(1-\frac{v}{c}\right)
$$

In this situation, $\gamma>1$, so $\frac{1}{\gamma^{2}}=\left(1-\frac{v^{2}}{c^{2}}\right)=\left(1-\frac{v}{c}\right)\left(1+\frac{v}{c}\right)$ $\simeq 2\left(1-\frac{v}{c}\right)$
or $\left(1-\frac{v}{c}\right) \simeq \frac{1}{2 \gamma^{2}}$

$$
\therefore \Delta t^{A}=\frac{1}{\gamma^{3} \omega_{B} \sin \alpha}
$$

The width of the pulse is smaller than $\frac{1}{\omega_{B}}$ by γ^{3} !

A Fourier transform of this pulse will be fairly frond b / C this pulse consists of mam high freq. Components

$$
\text { boundwidtu }=\Delta \omega^{\sim} \sim \Delta t^{-1}=\gamma^{3} \omega_{B} \sin \alpha
$$

Define a critical freq. $\omega_{C} \equiv \frac{3}{2} \gamma^{3} \omega_{B} \sin \alpha \alpha \gamma^{2}$ since $\omega_{B} \alpha \frac{1}{\gamma}$

$$
V_{c}=\frac{3}{4 \pi} \gamma^{3} \omega_{B} \sin \alpha
$$

The full call- gives a spectrum for one particle:

The spectrum peak occurs at $V_{m}=0.29 V_{c}=1.26 \times 10^{6} \mathrm{~B} \gamma^{2}(\mathrm{~Hz})$ For $B \sim 3 \mu G ; \gamma=10^{3}, V_{c} i V_{m} \simeq 3 \times 10^{7} \mathrm{~Hz}$ (in the radio speck.)
If $\gamma \sim 1$, them $V^{\sim} 30 \mathrm{~Hz}$, so rel effects boosted r by 10^{6} !
Volume Emissivity of a Power-Law Dist'n of e^{-}
Particle acc'n processes generally result in a power-law dist'n of particle energies

$$
N(E) d E=K E^{-P} d E
$$

where p is the energy spectral index ($n 2.5$). To compute the emissivity j_{r} we will assume (a) an uniform B-field: (b) isotropic dist'n

$$
\therefore \quad j r=\frac{1}{4 \pi} \int_{0}^{\infty} P(r, E) N(E) d E
$$

Approximate integral by assuming all e^{-}radiate at their V_{c} Then, $j r d v=\frac{N(E) d E}{4 \pi} \times P(E)=\frac{K E^{-P}}{4 \pi} \times \frac{2 q^{4} B_{\perp}^{2}}{3 m^{2} c^{3}}\left(\frac{E}{m c^{2}}\right)^{2} d E$

But $\left.r=r_{c}=3 \omega_{B} \sin \alpha \gamma^{3}=3\left(\underline{e} B_{2}\right) / E_{1}\right)^{3}$

But $r=r_{c}=\frac{3}{4 \pi} \omega_{B} \sin \alpha \gamma^{3}=\frac{3}{4 \pi}\left(\frac{e B_{2}}{r_{m c}}\right)\left(\frac{E}{m c^{2}}\right)^{3}$
Solve for E; then calculate $d E=\cdots d r$, sultstitute and ASA

$$
j_{r} \simeq \frac{1}{9}\left(\frac{q^{3}}{m c^{2}}\right)\left(\frac{3 q}{4 \pi m^{3} c^{5}}\right)^{(p-1) / 2} K B_{\perp}^{(p+1) / 2} V^{(1-p) / 2}
$$

Formula is an approx. (see refs for exact formula) but has the correct depundeces on B_{1} ir. That is, if $p=2.5$ then $V^{-0.75}$
Note that radiation losses by migh-energy particles wild lead to an abrupt cutoff in the spectrum

Historically, non-thermal synchrotron is more important than

Thermal synchrotron $b / c p \propto \gamma^{2}$ while thermal energy is more evenly distributed, so unless the thermal plasma $T \gg \frac{m c^{2}}{k}$, thermal synchrotron sources are too faint. But, the SMBAt a Syr A^{*} has a spectrme that requires thermal synchrotron, so it can be relevent.

