High-Energy Astrophysics Problem Set 1 Due: 3/7/18

1. (a) Show that the transformation of acceleration is

$$a_x = \frac{a'_x}{\gamma^3 \sigma^3},$$

$$a_y = \frac{a'_y}{\gamma^2 \sigma^2} - \frac{u'_y v}{c^2} \frac{a'_x}{\gamma^2 \sigma^3},$$

$$a_z = \frac{a'_z}{\gamma^2 \sigma^2} - \frac{u'_z v}{c^2} \frac{a'_x}{\gamma^2 \sigma^3},$$

where

$$\sigma \equiv 1 + \frac{v u'_x}{c^2}.$$

(b) If K' is the instantaneous rest frame of the particle, show that

$$\begin{aligned} a'_{\parallel} &= \gamma^3 a_{\parallel}, \\ a'_{\perp} &= \gamma^2 a_{\perp}, \end{aligned}$$

where a_{\parallel} and a_{\perp} are the components parallel and perpendicular to the direction of v, respectively.

2. Suppose X-rays are received from a source of known distance L with a flux F (erg cm⁻² s⁻¹). The X-ray spectrum has the form of Fig. 1. It is conjectured that these X-rays are due to bremsstrahlung from an optically thin, hot, plasma cloud, which is in hydrostatic equilibrium around a central mass M. Assume that the cloud thickness ΔR is roughly its radius R, $\Delta R \sim R$. Find R and the density of the cloud, ρ , in terms of the known observations and conjectured mass M (Hint: the virial theorem will be helpful). If $F = 10^{-8}$ erg cm⁻² s⁻¹, L = 10 kpc, what are the constraints on M such that the source would indeed be effectively optically thin at 1 keV (for self-consistency)? Does electron scattering play any role?

Figure 1:

3. (a) Use the basic equation from classical radiation theory,

$$\vec{E} \propto \hat{n} \times (\hat{n} - \vec{\beta}) \times \vec{\beta},$$

to demonstrate that \vec{E} lies along $\dot{\vec{\beta}}$ for synchrotron radiation from ultra-relativistic electrons. Assume that the observer lies at the pulse center; i.e., \hat{n} and β are parallel at the peak of the pulse. Explain how polarization observations of synchrotron sources measure the direction of \vec{B} .

(b) Do the same for (i) non-relativistic electrons ($\beta \ll 1$) and (ii) partially relativistic electrons ($\beta \sim 1/2$), all radiating in a magnetic field. For these cases, assume that \hat{n} is parallel to the field \vec{B} and that the pitch angle is 90 degrees. No need to re-describe the interpretation of polarization observations.

(c) In class, we used the relativistic form of the Larmor formula to derive the total power emitted by an ultra-relativistic ($\gamma \gg 1$) synchrotron electron. We found that $P \propto \gamma^2 \propto E^2$, where E is the electron kinetic energy. Use the same approach to find the corresponding relation for an arbitrary Lorentz factor γ . Express the result in two forms, one where γ is the only independent variable describing the electron's energy (aside from the pitch angle θ , of course) and another where v/c is the only independent variable. In the second case, take the limit $v \ll c$ and show that $P \propto E^m$. What is the value of m? In particular, does m = 2 as in the ultra-relativistic limit?

4. It can be shown that the synchrotron absorption coefficient for an isotropic electron distribution N(E) is

$$\alpha_{\nu} = -\frac{c^2}{8\pi\nu^2} \int_0^\infty P(\nu, E) E^2 \frac{d}{dE} \left[\frac{N(E)}{E^2}\right] dE$$

where $P(\nu, E)$ is the spectrum for an individual electron. In class, we obtained a good approximation for the synchrotron emissivity j_{ν} due to a power-law distribution of electron energies by assuming that all the electrons radiate only at their critical frequencies ν_c rather than over a broad spectrum. The broad-band behavior turns out to be mostly buried in the convolution with the electron energy spectrum. Use the same approach to find an expression for α_{ν} for a power-law distribution of electron energies.

5. In class, we saw that low energy photons are on average boosted by a factor γ^2 in energy by scattering off relativistic electrons with a characteristic γ . Indeed, the total scattered power $P_{\rm IC}$ is proportional to $\gamma^2 U_R$ for "soft" radiation ($\gamma \epsilon \ll mc^2$). But, for specific incident angles θ and specific scattering angles θ'_S in the rest frame, the boost factor can be of order unity or even smaller in some instances. Consider the following three special cases and evaluate the factor relating ϵ_1 and ϵ . Assume that the Lorentz factor is large enough so that $(1 - v/c) = 1/(2\gamma^2)$ and (1 + v/c) = 2.

(a) $\theta = 0, \ \theta_s = \theta'_s = \theta_a$ (b) $\theta = 0, \ \theta_s = \theta'_s = \pi$ (c) $\theta = \theta_a, \ \theta_s = \theta'_s = \pi$ Here, $\theta_a = \langle \theta \rangle = \pi/2 \rightarrow \langle \cos \theta \rangle = \cos \theta_a = 0.$

- 6. Consider the observed X-ray source of Problem 2. From the deduced characteristics of the source, determine a lower limit to the central mass M such that inverse Compton effects in the emission mechanism are negligible.
- 7. Show that the photon energy in the electron rest frame is small compared to mc^2 for the following two cases:

i. Electrons with $\gamma \sim 10^4$ scattering synchrotron photons produced in a magnetic field $B \sim 0.1$ G (typical of compact radio sources).

ii. Electrons with $\gamma \sim 10^4$ scattering the 3 K photons of the cosmic microwave background.