High-Energy Astrophysics Problem Set 2 Due: 4/13/18

1. The *Chandra X-ray Observatory* detected about 220 X-ray photons from Sgr A^{*} during a 4.0×10^4 s observation. The effective area of *Chandra* is 600 cm².

(a) If each photon has an typical energy of 1 keV, calculate the observed flux of Sgr A^* (in erg cm⁻² s⁻¹).

(b) The Galactic Center is 8 kpc away. Assuming there is little absorption along the line-of-sight (not true!), estimate the X-ray luminosity of Sgr A^{*}. Do you have to make any other assumptions?

(c) Observations indicate that Sgr A^{*} is inside a hot ($kT \approx 1.3 \text{ keV}$) nebula with density $n \approx 26 \text{ cm}^{-3}$. The estimated black hole mass is $4 \times 10^6 \text{ M}_{\odot}$. Assuming $\gamma = 5/3$, what is the expected Bondi accretion rate onto the black hole?

(d) With this accretion rate and observed luminosity, estimate the radiative efficiency of Sgr A^{*}.

(e) What is the Eddington luminosity of Sgr A^{*}, and the observed Eddington ratio?

(f) Discuss the uncertainties that have gone into your estimates of the radiative efficiency and Eddington ratio. Which is less certain?

- 2. Derive the seven equations describing the α disk in the gas-pressure dominated regime with electron scattering opacity. That is, find the equations for Σ , H, ρ , T_c , τ , ν and v_R in terms of α , η (the radiative efficiency), M/M_{\odot} , $\dot{M}/\dot{M}_{\rm Edd}$, $R/R_{\rm Sch}$ and f, where $R_{\rm Sch}$ is the Schwarzschild radius, $\dot{M}_{\rm Edd}$ is the Eddington mass accretion rate and $f^4 = (1 - (R_*/R)^{1/2})$. Verify that the disk is thin in this regime. Use $\kappa_{\rm es} = 0.4 \, {\rm cm}^2 \, {\rm g}^{-1}$.
- 3. As above, except for the radiation pressure dominated regime with electron scattering opacity. Show that

$$\Sigma = (0.43)\alpha^{-1} \left(\frac{\eta}{0.1}\right) \left(\frac{\dot{M}}{\dot{M}_{Edd}}\right)^{-1} \left(\frac{R}{R_{Sch}}\right)^{3/2} f^{-4}$$

$$H = (2.2 \times 10^{6}) \left(\frac{\eta}{0.1}\right)^{-1} \left(\frac{M}{M_{\odot}}\right) \left(\frac{\dot{M}}{\dot{M}_{Edd}}\right) f^{4}$$

$$\rho = (1.9 \times 10^{-7})\alpha^{-1} \left(\frac{M}{M_{\odot}}\right)^{-1} \left(\frac{\eta}{0.1}\right)^{2} \left(\frac{\dot{M}}{\dot{M}_{Edd}}\right)^{-2} \left(\frac{R}{R_{Sch}}\right)^{3/2} f^{-8}$$

$$T_{c} = (3.7 \times 10^{7})\alpha^{-1/4} \left(\frac{M}{M_{\odot}}\right)^{-1/4} \left(\frac{R}{R_{Sch}}\right)^{-3/8}$$

$$\tau = (0.17)\alpha^{-1} \left(\frac{\eta}{0.1}\right) \left(\frac{\dot{M}}{\dot{M}_{\rm Edd}}\right)^{-1} \left(\frac{R}{R_{\rm Sch}}\right)^{3/2} f^{-4}$$

$$\nu = (3.6 \times 10^{17})\alpha \left(\frac{M}{M_{\odot}}\right) \left(\frac{\eta}{0.1}\right)^{-2} \left(\frac{\dot{M}}{\dot{M}_{\rm Edd}}\right)^{2} \left(\frac{R}{R_{\rm Sch}}\right)^{-3/2} f^{8}$$

$$v_{r} = (1.8 \times 10^{12})\alpha \left(\frac{\eta}{0.1}\right)^{-2} \left(\frac{\dot{M}}{\dot{M}_{\rm Edd}}\right)^{2} \left(\frac{R}{R_{\rm Sch}}\right)^{-5/2} f^{4}$$

From these, derive an expression for the dividing line in radius between the gas-pressure and radiation pressure dominated regions.