High-Energy Astrophysics
Problem Set 1 — Solutions

1. (a) The Lorentz transformation for differentials are dx = ~y(da’ + vdt'), dy = dy/,
dz = d7', and dt = y(dt' + (v/c?)dz’) = yodt', where

v’

oc=1+ 2

Combine these with the Lorentz transformations of velocities:

dx y(dz' + vdt') )+ v
Uy = — = = ,
dt — y(dt' + (v/c?)dx’) 1+ vul,/c?
u/
uy, = ——L——|
Y(1 + vul,/c?)
u/
u, = ud

v(1 4+ vu! /c?)

to compute changes in velocities measured in different frames:

du, = 7_20_2du'

x?

Y c2 z

vu!
du, = vy lo? (adu' — —ydu'> .

Hence,

du, 3 _3du; 3 -3
e = " a7
o o= G s du vy du
Y dt dt' 2 dt')’

A similar result holds for a,.

(b) If the particle is at rest instantaneously in K’, then v}, = u; = u,, = 0. Then o = 1,
and from part (a),

o 3
a = 7q;,

A2
a, = 7Yaj.



2. The knee in the spectrum gives 7"

E,
T = 2% ~10° K.
k

In class, we showed that the total emissivity from a bremsstahlung plasma is
€premss = (1.4 X 10_27)T1/2neniZ2g33 erg s~1 cm ™3,

so the observed flux will be

1 47R3

-3 (1.4 x 1072"TY2nn, Z% ).

At T = 10° K the gas is completely ionized. If we can assume it is pure hydrogen,
n; = ne. (Including a typical He abundance makes only a negligible difference.) Then

0 \2
NiNe = N3y = <—> = 3.6 x 1077p%.
mu

Taking Z =1 and gg = 1.2 gives
F =20 x 10°p*T?R3L 72,

Hydrostatic equilibrium gives another constraint on p and R. From the virial theorem
we known that 2x (kinetic energy/particle)= —(gravitational energy /particle) or

GMmH
KT ~ .
R

For T = 10° K this implies

M
R=~5x 108 <ﬁ> cI.
©

Combining this expression for R with the equation for F' gives the following constraint
on p:

M\ 2
~4x 107682 [ — .
p X .

Substituting in the measured values of F' and L we obtain



~3/2
M
p~12x107" <ﬁ> g cm™?,
®

The optical depth of a free-free emitting plasma at a frequency v is

—2.1
7, = (8.235 x 1072)7 1% <ﬁ) Eya(v,T),

where
Ey = 72 /nenids

is the emisssion measure in pc cm~°. Taking a ~ 1, and substituting the above results

we find
—21 —2
N 10 v M
7, ~ (4.9 x 10™) (GHZ) (—@)

at 1 keV the optical depth is

-2
M
Tl keV ~ 1.2 % ]_0_7 (ﬁ)
©

So for the emission to be optically thin at 1 keV, 7 v < 1, or

M
— 3.5 x 1074
<M®> S

To check if electron scattering plays a role, calculate the optical depth to electron
scattering,

Tes R KepR,
where x, = 0.4 cm? g7!. From the above results,

A\ 2
s 24 | — )
5 <M®>

Thus, electron scattering will be important unless 7., < 1 or

M
M) s 576,
<M®> >



F oo ax(h—fxf=nxaxi-nxfxp
= w(F-n) = B-n)— B(Fa) + B B

The observer lies at the pulse center, i.e., n and B are parallel at the peak of the pulse.
But, for synchrotron radiation, EJ_E, SO mﬁ at the peak of the pulse, i.e., ﬁ n = 0.

So, from above, E o ﬁ((ﬁ B) = (- 7).

That is, E lies along ﬁ for synchrotron radiation. Thus, synchrotron radiation is coher-
ent and polarized with a polarization vector that is proportional to the acceleration,
i.e., the magnetic field B , although in general it is proportional to the projected mag-
netic field. Thus, if the intrinsic polarization vector can be measured, the intrinsic
projected magnetic field can be derived.

(b) (i) With non-relativistic electrons (3 < 1), E « ft x (7 x 3) = (ﬁ n) — B(n - 7).
Assume 7| B — nJ_ﬁ 6 n=0.
Therefore, E o —/6 3|72, So, E lies along 3 for non-relativistic electrons.

(ii) With partially relativistic electrons (5 ~ 1/2), go back to

-

(7)) — B(G - 7) + Bl - B)

R
>
@R

Eocn(3-n)—

Agam n||B — nJ_E E A = 0. In addition, the pitch angle is 90°, i.e., 3LB —
BJ_n — f3-n=0.
Therefore, E x —5 7|2, So, E lies along ﬁ for partially relativistic electrons.

(¢) The Larmor power for synchrotron radiation is

p_ 2™l
3¢

The acceleration from the magnetic field is

quBsinf
al = ——,
yme
where 6 is the pitch angle.
Therefore,
2¢ 20?2 B?sin? 0

pP—=

3cPm?



Now, v = 1/4/1 —v2/c%, or v?/c* = (42 — 1) /2. Therefore, the power emitted by an

arbitrary synchrotron electron is

_ 2¢"B%sin®6(72 — 1)
B 3cm? ’

P

or, if the dependent variable is v/c,

P 2¢*B%sin?0  (v/c)?

3c¢m?2 (11— (v/c)?)

When v/c < 1,
P 2¢*B? sin? Hv?

3cPm?

In the non-relativistic limit the elctron kinetic energy is £ =

B 4¢*B?sin? OF

P
3cdm?

1

2mu?, therefore

So, P o E in the non-relativistic limit, but P oc E? in the ultra-relativistic limit. That
is, the dependence of the synchrotron power on the elctron energy gets stronger as the
energy increases. This is all due to the factor 42 — 1 which goes like v? at low energy

(7 ~ 1) but like E? at high energy (v > 1).

. Assume electrons with a power-law distribution: N(E)dE = KE~PdE. Subsitituing

into the expression for o, gives

_ PK(p+2)

14
8mu?

/ " P(v, E)E""\dE,
0

Assume all the power gets radiated at the critical frequency v.. Therefore,

AK(p+2) dE
,=———ZP(E)E " —
T2 (E) dv’
where . )
2¢° B < E )
P(E) = —
(E) 3m2c3 \'mc?
and

3 (q¢B. ( E )3
v=v,=—|—||—
47 \ yme ) \mc?

From these expressions, one can calculate dE//dv and E(v,). Substituting and reducing

results in



3

q 3q o/ (p+2/2)  —(p+4/2)
a=(p+2) <18m> <47rm3c5> KB] v '

Like our expression for the emissivity, this expression for a, has the same dependence
on the magnetic field and frequency as the exact expression.

. The relation between the photon’s scattered energy €, and incident energy e is

—1
€5 = Ve 1+ 15 1— Zcos) (1+ Lcosd
mc? c c #

Consider soft radiation so ve < mc?, i.e., ye/mc* < 1. Therefore,
v v
€5~ Yle (1 — —cos 9) (1 + - COSQ;)
c c

Also we will assume (1 —v/c) =1/(2v?) and (1 +v/c) = 2.
(a) 0 =0,0,=0. =0,
(0, = (0) = 7/2 — (cosf) = cosf, = 0) From above,

€
€s R —

2

The scattered photon has one-half of its incident energy.

(b)0=0,0,=0 =nx

In this case,
€

42
Since v > 1, the scattered energy will be very small.
(c)0=10,,0,=0. =7

From above,

€s

€

€s R —

2

. Inverse Compton is important if the Compton y parameter exceeds unity:

4ET
Y= (—2> ™?>1
mc

The optical depth is 7.5 ~ kespR. From the solution to Problem 2,

T~ 10° K.



M —3/2
p~12x107"7 <ﬁ> g cm ™.
©

T
~ 400 [ —
Y 00<M@>

If M > 400 My, inverse Compton can be ignored, and the determination of T', p and
R on the assumption of pure bremsstrahlung cooling is self-consistent. On the other
hand, if M < 400 Mg, then the model is self-inconsistent, because inverse Compton
cooling was ignored in determining the energy balance.

Thus,

. 1. The characteristic synchrotron frequency is

3 (q¢B. ( E )3
v=v,=—|—||—
47 \ yme ) \mc?

Taking a pitch angle of sinf = 37/2,

o el Q(L)
w010V (15 (o1a)-

The ratio of the photon’s energy to the electron rest mass energy, in the electron rest
frame, is the given approximately by

e (1) (51a)
~20x 103 (L) (=)
me 2203107 1) (o1 a

ii. The energy associated with a temperature of 1 K is ~ 0.86 x 10~ eV. The blackbody
spectrum peaks at ~ 2.8kT". Thus, the characteristic photon in a blackbody spectrum
of temperature T has an energy ~ 2.4 x 107*T" eV. The ratio of a microwave photon
energy to electron rest mass in the latter’s rest frame is, therefore,

Yhve _5( g )
~14x1 — .
mc? x 10 104




