
High-Energy Astrophysics
Problem Set 1 — Solutions

1. (a) The Lorentz transformation for differentials are dx = γ(dx′ + vdt′), dy = dy′,
dz = dz′, and dt = γ(dt′ + (v/c2)dx′) = γσdt′, where

σ ≡ 1 +
vu′

x

c2
.

Combine these with the Lorentz transformations of velocities:

ux =
dx

dt
=

γ(dx′ + vdt′)

γ(dt′ + (v/c2)dx′)
=

u′
x + v

1 + vu′
x/c

2
,

uy =
u′

y

γ(1 + vu′
x/c

2)
,

uz =
u′

z

γ(1 + vu′
x/c

2)

to compute changes in velocities measured in different frames:

dux = γ−2σ−2du′
x,

duy = γ−1σ−2

(

σdu′
y −

vu′
y

c2
du′

x

)

.

Hence,

ax =
dux

dt
= γ−3σ−3du′

x

dt′
= γ−3σ−3a′

x,

ay =
duy

dt
= γ−2σ−3

(

σ
du′

y

dt′
−

vu′
y

c2

du′
x

dt′

)

,

= γ−2σ−3

(

σa′
y −

vu′
y

c2
a′

x

)

.

A similar result holds for az.

(b) If the particle is at rest instantaneously in K ′, then u′
x = u′

y = u′
z = 0. Then σ = 1,

and from part (a),

a′
‖ = γ3a‖,

a′
⊥ = γ2a⊥.



2. The knee in the spectrum gives T :

T =
Emax

k
≈ 109 K.

In class, we showed that the total emissivity from a bremsstahlung plasma is

ǫbremss = (1.4 × 10−27)T 1/2neniZ
2ḡB erg s−1 cm−3,

so the observed flux will be

F =
1

4πL2

4πR3

3
(1.4 × 10−27T 1/2neniZ

2ḡB).

At T = 109 K the gas is completely ionized. If we can assume it is pure hydrogen,
ni = ne. (Including a typical He abundance makes only a negligible difference.) Then

nine ≈ n2
H =

(

ρ

mH

)2

= 3.6 × 1047ρ2.

Taking Z = 1 and ḡB = 1.2 gives

F = 2.0 × 1020ρ2T 1/2R3L−2.

Hydrostatic equilibrium gives another constraint on ρ and R. From the virial theorem
we known that 2×(kinetic energy/particle)= −(gravitational energy/particle) or

3kT ∼
GMmH

R
.

For T = 109 K this implies

R ≈ 5 × 108

(

M

M⊙

)

cm.

Combining this expression for R with the equation for F gives the following constraint
on ρ:

ρ ≈ 4 × 10−26LF 1/2

(

M

M⊙

)−3/2

.

Substituting in the measured values of F and L we obtain



ρ ≈ 1.2 × 10−7

(

M

M⊙

)−3/2

g cm−3.

The optical depth of a free-free emitting plasma at a frequency ν is

τν = (8.235 × 10−2)T−1.35
(

ν

GHz

)−2.1

EMa(ν, T ),

where

EM = Z2
∫

nenids

is the emisssion measure in pc cm−6. Taking a ≈ 1, and substituting the above results
we find

τν ≈ (4.9 × 1010)
(

ν

GHz

)−2.1
(

M

M⊙

)−2

at 1 keV the optical depth is

τ1 keV ≈ 1.2 × 10−7

(

M

M⊙

)−2

So for the emission to be optically thin at 1 keV, τ1 keV ≪ 1, or

(

M

M⊙

)

≫ 3.5 × 10−4

To check if electron scattering plays a role, calculate the optical depth to electron
scattering,

τes ≈ κeρR,

where κe = 0.4 cm2 g−1. From the above results,

τes ≈ 24

(

M

M⊙

)−1/2

.

Thus, electron scattering will be important unless τes ≪ 1 or

(

M

M⊙

)

≫ 576.



3. (a)

~E ∝ n̂ × (n̂ − ~β) × ~̇β = n̂ × n̂ × ~̇β − n̂ × ~β × ~̇β

= n̂(~̇β · n̂) − ~̇β(n̂ · n̂) − ~β(~̇β · n̂) + ~̇β(n̂ · ~β)

The observer lies at the pulse center, i.e., n̂ and ~β are parallel at the peak of the pulse.

But, for synchrotron radiation, ~β⊥~̇β, so n̂⊥~̇β at the peak of the pulse, i.e., ~̇β · n̂ = 0.

So, from above, ~E ∝ ~̇β((n̂ · ~β) − (n̂ · n̂)).

That is, ~E lies along ~̇β for synchrotron radiation. Thus, synchrotron radiation is coher-
ent and polarized with a polarization vector that is proportional to the acceleration,
i.e., the magnetic field ~B, although in general it is proportional to the projected mag-
netic field. Thus, if the intrinsic polarization vector can be measured, the intrinsic
projected magnetic field can be derived.

(b) (i) With non-relativistic electrons (β ≪ 1), ~E ∝ n̂ × (n̂ × ~̇β) = n̂(~̇β · n̂) − ~̇β(n̂ · n̂).

Assume n̂‖ ~B → n̂⊥~̇β → ~̇β · n̂ = 0.

Therefore, ~E ∝ −~̇β|n̂|2. So, ~E lies along ~̇β for non-relativistic electrons.

(ii) With partially relativistic electrons (β ∼ 1/2), go back to

~E ∝ n̂(~̇β · n̂) − ~̇β(n̂ · n̂) − ~β(~̇β · n̂) + ~̇β(n̂ · ~β)

Again, n̂‖ ~B → n̂⊥~̇β → ~̇β · n̂ = 0. In addition, the pitch angle is 90◦, i.e., ~β⊥ ~B →
~β⊥n̂ → β · n̂ = 0.

Therefore, ~E ∝ −~̇β|n̂|2. So, ~E lies along ~̇β for partially relativistic electrons.

(c) The Larmor power for synchrotron radiation is

P =
2q2γ4a2

⊥

3c3
.

The acceleration from the magnetic field is

a⊥ =
qvB sin θ

γmc
,

where θ is the pitch angle.

Therefore,

P =
2q4γ2v2B2 sin2 θ

3c5m2
.



Now, γ = 1/
√

1 − v2/c2, or v2/c2 = (γ2 − 1)/γ2. Therefore, the power emitted by an
arbitrary synchrotron electron is

P =
2q4B2 sin2 θ(γ2 − 1)

3c3m2
,

or, if the dependent variable is v/c,

P =
2q4B2 sin2 θ

3c3m2

(v/c)2

(1 − (v/c)2)
.

When v/c ≪ 1,

P =
2q4B2 sin2 θv2

3c5m2
.

In the non-relativistic limit the elctron kinetic energy is E = 1
2
mv2, therefore

P =
4q4B2 sin2 θE

3c5m3
.

So, P ∝ E in the non-relativistic limit, but P ∝ E2 in the ultra-relativistic limit. That
is, the dependence of the synchrotron power on the elctron energy gets stronger as the
energy increases. This is all due to the factor γ2 − 1 which goes like v2 at low energy
(γ ∼ 1) but like E2 at high energy (γ ≫ 1).

4. Assume electrons with a power-law distribution: N(E)dE = KE−pdE. Subsitituing
into the expression for αν gives

αν =
c2K(p + 2)

8πν2

∫ ∞

0
P (ν, E)E−p−1dE,

Assume all the power gets radiated at the critical frequency νc. Therefore,

αν =
c2K(p + 2)

8πν2
P (E)E−p−1dE

dν
,

where

P (E) =
2q4B2

⊥

3m2c3

(

E

mc2

)2

and

ν = νc =
3

4π

(

qB⊥

γmc

)

(

E

mc2

)3

From these expressions, one can calculate dE/dν and E(νc). Substituting and reducing
results in



αν = (p + 2)

(

q3

18m

)

(

3q

4πm3c5

)p/2

KB
(p+2/2)
⊥ ν−(p+4/2).

Like our expression for the emissivity, this expression for αν has the same dependence
on the magnetic field and frequency as the exact expression.

5. The relation between the photon’s scattered energy ǫs and incident energy ǫ is

ǫs = γ2ǫ
(

1 +
γǫ

mc2

)−1 (

1 −
v

c
cos θ

)(

1 +
v

c
cos θ′s

)

Consider soft radiation so γǫ ≪ mc2, i.e., γǫ/mc2 ≪ 1. Therefore,

ǫs ≈ γ2ǫ
(

1 −
v

c
cos θ

)(

1 +
v

c
cos θ′s

)

Also we will assume (1 − v/c) = 1/(2γ2) and (1 + v/c) = 2.

(a) θ = 0, θs = θ′s = θa

(θa = 〈θ〉 = π/2 → 〈cos θ〉 = cos θa = 0) From above,

ǫs ≈
ǫ

2

The scattered photon has one-half of its incident energy.

(b) θ = 0, θs = θ′s = π
In this case,

ǫs ≈
ǫ

4γ2

Since γ ≫ 1, the scattered energy will be very small.

(c) θ = θa, θs = θ′s = π
From above,

ǫs ≈
ǫ

2

6. Inverse Compton is important if the Compton y parameter exceeds unity:

y =

(

4kT

mc2

)

τ 2 ≫ 1

The optical depth is τes ∼ κesρR. From the solution to Problem 2,

T ≈ 109 K.



R ≈ 5 × 108

(

M

M⊙

)

cm.

ρ ≈ 1.2 × 10−7

(

M

M⊙

)−3/2

g cm−3.

Thus,

y ∼ 400

(

M

M⊙

)−1

If M ≫ 400 M⊙, inverse Compton can be ignored, and the determination of T , ρ and
R on the assumption of pure bremsstrahlung cooling is self-consistent. On the other
hand, if M < 400 M⊙, then the model is self-inconsistent, because inverse Compton
cooling was ignored in determining the energy balance.

7. i. The characteristic synchrotron frequency is

ν = νc =
3

4π

(

qB⊥

γmc

)

(

E

mc2

)3

Taking a pitch angle of sin θ = 3−1/2,

hνc ≈ 0.10 eV
(

γ

104

)2 ( B

0.1 G

)

.

The ratio of the photon’s energy to the electron rest mass energy, in the electron rest
frame, is the given approximately by

γhνc

mc2
≈ 2.0 × 10−3

(

γ

104

)3 ( B

0.1 G

)

.

ii. The energy associated with a temperature of 1 K is ∼ 0.86×10−4 eV. The blackbody
spectrum peaks at ∼ 2.8kT . Thus, the characteristic photon in a blackbody spectrum
of temperature T has an energy ∼ 2.4 × 10−4T eV. The ratio of a microwave photon
energy to electron rest mass in the latter’s rest frame is, therefore,

γhνc

mc2
≈ 1.4 × 10−5

(

γ

104

)

.


