
High-Energy Astrophysics
Problem Set 2 — Solutions

1. (a) If each photon has a typical energy of 1 keV, then 220 photons≈ 3.5 × 10−7 erg.
The observed flux is then F = 1.5 × 10−14 erg cm−2 s−1.

(b) Assuming isotropic emission, L = 4πd2F = 1.1 × 1032 erg s−1.

(c) From the class notes, the Bondi accretion rate is
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where the γ-dependent factor is ≈ 1 when γ = 5/3. Assuming mostly hydrogen gas,
ρ = 4.3 × 10−23 g cm−3, and
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Thus, cs ≈ 3.5 × 107 cm s−1 and

Ṁ = 8.7 × 1020 g s−1 = 1.4 × 10−5 M⊙ yr−1.

(d) η = L
Ṁc2

= 1.4 × 10−10

(e) LEdd = (1.3 × 1038)
(
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= 5.2 × 1044 erg s−1.

L
LEdd

= 2.2 × 10−13

(f) The uncertainties that go into the Eddington ratio are the distance to Sgr A∗, the
mass of the BH, and the measurement of L. Most of these are fairly well understood.
The radiative efficiency estimate is more uncertain because, in addition to the uncer-
tainties in the distance and isotropy of the emission, it is assuming that the accretion
rate into the BH is the same as the Bondi rate. The Bondi rate is likely only to be an
upper limit.

2. Following the procedure described in class and using κes = 0.4 cm2 g−1 gives
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Ṁ
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ṀEdd

)3/5
(

R

RSch

)−3/5
(

M

M⊙

)1/5

f 12/5

ν = (1.5 × 1012)α4/5

(

M

M⊙

)4/5 (
η

0.1

)−2/5
(

Ṁ
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Calculating H/R,
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Ṁ
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we see that the disk is thin, as required.

Note I followed Frank, King & Raine (2002) and used µ = 0.615 for the mean molecular
weight. This is appropriate for a fully ionized ‘cosmic’ mixture of gases.

3. The solutions are obtained by following the same procedure, but using radiation pres-
sure (P = (4σ/4c)T 4

c ) as the only source of pressure.
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To calculate the dividing line in radius between the gas pressure and radiation pres-
sure dominated regions, first calculate the expressions for gas pressure and radiation
pressure using the above radiation pressure dominated solutions:
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Then set the two pressures equal and solve for radius:
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